Abstract

We have developed a method for estimating hourly global solar radiation (GSR) from hourly sunshine duration data. This procedure requires only hourly sunshine duration as the input data and utilizes hourly precipitation and daily snow cover as auxiliary data to classify time intervals into six cases according to weather conditions. To obtain hourly GSR using a simple algebraic form, a quadratic function of the solar elevation angle and the sunshine duration ratio is used. Daily GSR is given by a sum of hourly GSRs. We evaluated the performance of the newly developed method using data obtained at 67 meteorological stations and found that the estimated GSR is highly consistent with that observed. Hourly and daily root-mean-square misfits are approximately 0.2 MJ/m2/h (~55 W/m2) and 1.4 to 1.5 MJ/m2/day (~16 to 17 W/m2), respectively. Our classification of weather conditions is effective for reducing estimation errors, especially under cloudy skies. Since the sunshine duration is observed at more meteorological stations than GSR, the proposed new method is a powerful tool for obtaining solar radiation with hourly resolution and a dense geographical distribution. One of the proposed methods, GSRgrn, can be applicable to hourly GSR estimations at different observation sites by setting local parameters (the precipitable water, surface albedo, and atmospheric turbidity) suitable to the sites. The hourly GSR can be applied for various micrometeorological studies, such as the heat budget of crop fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call