Abstract

Using first-principles calculations combined with a constant-potential implicit solvent model, we comprehensively studied the activity of oxygen electrode reactions catalyzed by electride-supported FeN4-embedded graphene (FeN4Cx). The physical quantities in FeN4Cx/electrides, i.e., work function of electrides, interlayer spacing, stability of heterostructures, charge transferred to Fe, d-band center of Fe, and adsorption free energy of O, are highly intercorrelated, resulting in activity being fully expressed by the nature of the electrides themselves, thereby achieving a precise modulation in activity by selecting different electrides. Strikingly, the FeN4PDCx/Ca2N and FeN4PDCx/Y2C systems maintain a high oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) activity with the overpotential less than 0.46 and 0.62 V in a wide pH range. This work provides an effective strategy for the rational design of efficient bifunctional catalysts as well as a model system with a simple activity-descriptor, helping to realize significant advances in energy devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call