Abstract

In this work we present an improved approach for the analysis of (1)H double-quantum nuclear magnetic resonance build-up data, mainly for the determination of residual dipolar coupling constants and distributions thereof in polymer gels and elastomers, yielding information on crosslink density and potential spatial inhomogeneities. We introduce a new generic build-up function, for use as component fitting function in linear superpositions, or as kernel function in fast Tikhonov regularization (ftikreg). As opposed to the previously used inverted Gaussian build-up function based on a second-moment approximation, this method yields faithful coupling constant distributions, as limitations on the fitting limit are now lifted. A robust method for the proper estimation of the error parameter used for the regularization is established, and the approach is demonstrated for different inhomogeneous elastomers with coupling constant distributions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call