Abstract

Layered double hydroxides (LDHs) and metal sulfides (MSs) have been widely used as promising electrode materials for supercapacitors, and the rational architectural design of MS/LDH heterogeneous structures is critical to optimize large energy storage. Herein, a precisely designed hollow Co9S8 nanotubes@CoNi-LDH nanosheet heterostructure on Ni foam, facilely prepared by an ingenious in situ strategy in this Co9S8 nanoarray was first used as the self-sacrificing template and metal source to in situ synthesize Co-ZIF-67 polyhedron to form the Co9S8@ZIF-67 heterostructure, and then Co9S8@ZIF-67 was in situ etched successfully using Ni2+ ions to form the final Co9S8@CoNi-LDH/NF core-shell nanoarray. This in situ synthetic strategy to fabricate the heterostructure is conducive to boosting the structural stability, modifying the electric structure and regulating the interfacial charge transfer. Due to the synergistic effect and tight heterogeneous interface, Co9S8@CoNi-LDH/NF displayed an outstanding capacitance of 9.65 F cm-2 at a current density of 2 mA cm-2 and excellent capacitance retention rate of 91.7% after 5000 cycles. In addition, the ASC device assembled with AC has an extremely high energy density of 1.0 mW h cm-2 at 2 mA cm-2 and maintains 96.9% capacitance retention after 5000 cycles. This work provides a skillful strategy for the precise design and in situ synthesis of MS/LDH heterostructures with fascinating features for electrochemical energy storage applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.