Abstract
Nanomaterials derived from metal-organic frameworks (MOFs) are highly promising as future flame retardants for polymeric materials. The precise control of the interface for polymer nanocomposites is taking scientific research by storm, whereas such investigations for MOF-based nanofillers are rare. Herein, a novel yolk-double shell nanostructure (ZIF-67@layered double hydroxides@polyphophazenes, ZIF@LDH@PZS) was subtly designed and introduced into epoxy resin (EP) as a flame retardant to fill the vacancy of yolk/shell construction in the field. Meanwhile, the interface of the polymer nanocomposites can be further accurately tailored by the outermost layer of the nanofillers from PZS to Ni(OH)2 (NH), by which hollow nanocages with treble shells (LDH@PZS@NH) were obtained. It is remarkably interesting that LDH@PZS@NH endows the EP with the lowest peak of heat release rate in the cone calorimeter test, but the total heat and smoke releases (THR and TSP) of the nanocomposites are even higher than those of the neat polymer. In contrast, EP blended with ZIF@LDH@PZS shows outstanding comprehensive performance: with 2 wt.%, the limiting oxygen index is increased to 29.5%, and the peak heat release rate is reduced by 26.0%. The impact and flexural strengths are slightly lowered, while the storage modulus is enhanced remarkably compared with that for neat EP. The flame retardant mechanism is systematically explored focusing on the interfacial interactions of different hybrids within the epoxy matrix, ushering in a new stage of study of nanostructural design-guided interface manipulation in MOF-based polymer nanocomposites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.