Abstract

BackgroundColor traits in animals play crucial roles in thermoregulation, photoprotection, camouflage, and visual communication, and are amenable to objective quantification and modeling. However, the extensive variation in non-melanic pigments and structural colors in squamate reptiles has been largely disregarded. Here, we used an integrated approach to investigate the morphological basis and physical mechanisms generating variation in color traits in tropical day geckos of the genus Phelsuma.ResultsCombining histology, optics, mass spectrometry, and UV and Raman spectroscopy, we found that the extensive variation in color patterns within and among Phelsuma species is generated by complex interactions between, on the one hand, chromatophores containing yellow/red pteridine pigments and, on the other hand, iridophores producing structural color by constructive interference of light with guanine nanocrystals. More specifically, we show that 1) the hue of the vivid dorsolateral skin is modulated both by variation in geometry of structural, highly ordered narrowband reflectors, and by the presence of yellow pigments, and 2) that the reflectivity of the white belly and of dorsolateral pigmentary red marks, is increased by underlying structural disorganized broadband reflectors. Most importantly, these interactions require precise colocalization of yellow and red chromatophores with different types of iridophores, characterized by ordered and disordered nanocrystals, respectively. We validated these results through numerical simulations combining pigmentary components with a multilayer interferential optical model. Finally, we show that melanophores form dark lateral patterns but do not significantly contribute to variation in blue/green or red coloration, and that changes in the pH or redox state of pigments provide yet another source of color variation in squamates.ConclusionsPrecisely colocalized interacting pigmentary and structural elements generate extensive variation in lizard color patterns. Our results indicate the need to identify the developmental mechanisms responsible for the control of the size, shape, and orientation of nanocrystals, and the superposition of specific chromatophore types. This study opens up new perspectives on Phelsuma lizards as models in evolutionary developmental biology.

Highlights

  • Color traits in animals play crucial roles in thermoregulation, photoprotection, camouflage, and visual communication, and are amenable to objective quantification and modeling

  • The skin organization in Phelsuma geckos (Figure 2a) resembles that of other lizards [9]: chromatophores are absent from the thin epidermis, but are abundant in the thick dermal layer, which contains, from top to bottom, yellow xanthophores or red erythrophores, iridophores containing nanocrystals, and dark-brown melanophores

  • We report on the chemical and optical analyses of pigments and guanine crystals, and provide a multilayer optical model that describes the interactions among different types of pigmentary and structural chromatophores generating a variety of skin colors in Phelsuma geckos

Read more

Summary

Introduction

Color traits in animals play crucial roles in thermoregulation, photoprotection, camouflage, and visual communication, and are amenable to objective quantification and modeling. Color traits play crucial roles in thermoregulation, photoprotection, camouflage, and visual communication [1,2,3,4], and can vary extensively among and within species and populations. In addition to melanophores, which produce black/brown melanins, squamates develop xanthophores and erythrophores, containing yellow and red pigments, respectively. These pigments are typically either pteridines, which are synthesized in situ from guanosine triphosphate, or carotenoids, which are metabolized from food in the liver and transported to skin via the circulatory system [5,6]. The spatial arrangement of all these cell types generates a broad range of colors and color patterns

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call