Abstract

Prokaryotic cyanobacteria express robust circadian (daily) rhythms under the control of a timing mechanism that is independent of the cell division cycle. This biological clock orchestrates global regulation of gene expression and controls the timing of cell division. Proteins that may be involved in input pathways have been identified. Mutational screening has identified three clock genes that are organized as a gene cluster. The structure of cyanobacterial clock proteins, their phosphorylation, and regulation is described. A new model for the core clockwork in cyanobacteria proposes that rhythmic changes in the status of the chromosome underlie the rhythms of gene expression. Mixed-strain experiments demonstrate that this timekeeper confers adaptive value when different strains compete against each other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call