Abstract
A semi-analytical method for bending analysis of corrugated-core, honeycomb-core and X-core sandwich panels is presented. The real displacement of sandwich panels is divided into the global displacement field and local displacement field. The discrete geometric nature of the core is taken into account by treating the core sheets as beams and the sandwich panel as composite structure of plates and beams with proper displacement compatibility. In the global displacement field, the governing equations of these sandwich panels are derived using energy variation principle and solved by employing Fourier series and the Galerkin approach. In the local displacement field, the face sheets under external loads are taken as a multi-span thin plate and the local bending response are then computed. Then the real bending responses are obtained by superposing these bending responses calculated in the two displacement fields and the structural stress fluctuation can be captured. Results from the proposed method agree well with available results in the literature and those from detailed finite element analysis. Furthermore, the mechanical properties of the three kinds of sandwich panels have been compared.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.