Abstract
Targeted temperature control in nanopores is greatly important in further understanding biological molecules. Such control would extend the range of examinable molecules and facilitate advanced analysis, including the characterization of temperature-dependent molecule conformations. The work presented within details well-defined plasmonic gold bullseye and silicon nitride nanopore membranes. The bullseye nanoantennae are designed and optimized using simulations and theoretical calculations for interaction with 632.8 nm laser light. Laser heating was monitored experimentally through nanopore conductance measurements. The precise heating of nanopores is demonstrated while minimizing the accumulation of heat in the surrounding membrane material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.