Abstract

Performing cyclic voltammetry at scan rates into the megavolt per second range allows the exploration of the nanosecond time scale as well as the creation of nanometric diffusion layers adjacent to the electrode surface. This latter property is used here to adjust precisely the diffusion layer width within the outer shell of a fourth-generation dendrimer molecule decorated by 64 [Ru(II)(tpy)2] redox centers (tpy = terpyridine). Thus the shape of the dendrimer molecule adsorbed onto the ultramicroelectrode surface can be explored voltammetrically in a way reminiscent of an analysis with a nanometric microtome. The quantitative analysis developed here applied to the experimental voltammograms demonstrates that in agreement with previous scanning tunneling microscopy (STM) studies the adsorbed dendrimer molecules are no more spherical as they are in solution but resemble more closely hemispheres resting onto the electrode surface on their diametrical planes. The same quantitative analysis gives access to the apparent diffusion coefficient featuring electron hopping between the [Ru(II)/ Ru(III)(tpy)2] redox centers distributed on the dendrimer surface. Based on the electron hopping rate constant thus measured and on a Smoluchowski-type model developed here to take into account viscosity effects during the displacement of the [Ru(II)/Ru(III)(tpy)2] redox centers around their equilibrium positions, it is shown that the [Ru(II)/Ru(III)(tpy)2] redox centers are extremely labile in their potential wells so that they may cross-talk considerably more easily than they would do in solution at an equivalent concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call