Abstract

Abstract The three-dimensional (3D) structure of precipitation systems is highly dependent on hydrometeor formation processes and microphysics. This study aims to characterize distinct vertical profiles of precipitation regimes by relying on the availability of a high-quality, spatially dense radar network and its capability to observe the 3D structure of the storms. A deep-learning-based framework, coupled with unsupervised clustering methods, is developed to identify types of precipitation structures irrespective of their physical properties. A 6-month period of 3D reflectivity profiles from the Multi-Radar Multi-Sensor (MRMS) network is used to identify different regimes and investigate their properties with respect to the underlying environmental conditions. Dominant features retrieved from radar reflectivity profiles using convolutional neural-network-based autoencoders are employed to identify similar-looking vertical structures using coupled k-means and agglomerative clustering algorithms. The k-means method identifies distinct groups, while the agglomerative clustering visualizes intercluster relationships. The framework identifies 18 clusters that can be broadly combined into five groups of varied echo-top heights. The 18 clusters demonstrate variability with respect to structural features and precipitation rate/type, implying that profiles in each group belong to a physically different precipitation regime. An independent analysis of the regime properties is conducted by matching the MRMS reflectivity profiles with environmental parameters derived from the High-Resolution Rapid Refresh model forecasts. The distribution of the environmental variables confirms cluster-specific feature properties, confirming the physics-based regime separation across the clusters and their dependence on the vertical structure. The identified precipitation regimes can assist in developing physics-guided retrievals and studying precipitation regimes. Significance Statement This study proposes a systematic model to identify precipitation profiles of distinct vertical structures and evaluate their dependence on environmental conditions. The model was developed using ground-based radar observations; however, there is potential to extend this model to reflectivity profiles from both ground- and satellite-based sensors. In addition, the identified precipitation regime clusters could be a proxy for the vertical structure of precipitation systems and assist in determining the structural variability within traditional precipitation type classification (e.g., convective versus stratiform). Moreover, identifying the precipitation regimes could also be used to improve satellite-based precipitation retrievals. Finally, a better understanding of precipitation structure would also help improve the initialization of climate models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call