Abstract

The rare earth (RE = Eu and Tb) ions‐doped α‐Zr(HPO4)2 (ZrP) nanosheet phosphors were synthesized by direct precipitation method, and their structures and photoluminescence properties were investigated. The results of X‐ray diffraction and scanning electron microscopy indicated that the systems of ZrP:RE3+ had similar nanosheet structure except with relatively larger interlayer spacing as compared with pure α‐ZrP. Under the excitation of UV light, the ZrP:RE3+ nanosheet phosphors showed red and green emission peaks corresponding to the 5D0→7F2 transition of Eu3+ and the 5D4→7F5 transition of Tb3+, respectively. After Eu3+ and Tb3+ were co‐doped in ZrP host, not only the red and green emission peaks were simultaneously observed, but also the luminescent intensity and fluorescence lifetimes of Tb3+ were gradually decreased with the increase in Eu3+‐doping concentration, which implied the energy transfer from Tb3+ to Eu3+ happened. It was deduced that the energy transfer from Tb3+ to Eu3+ occurred via exchange interaction. Through optimization to the samples, a nearly white‐light emission with the color coordinate (0.322, 0.263) was achieved under 377 nm excitation. The ZrP:RE3+ nanosheet phosphors may be a potential color‐tailorable candidate for fabricating optoelectronic devices such as electroluminescence panels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.