Abstract

The Fe-Si-Ti system is known to show nanoscale precipitation of the Fe2SiTi Heusler phase with potentially high volume fraction (~4%), very high density and a size ranging from 1 to 20nm after artificial aging. The strong hardening potential of these precipitates make these steels candidates for automotive applications; however no understanding of the precipitation sequence (competition with other phases) nor the precipitation kinetics are available. The present study presents a quantitative study of the precipitation kinetics (size, volume fraction and number density) in a wide temperature range (450-800°C), realised by coupling systematically Small Angle Neutron Scattering (SANS), Transmission Electron microscopy (TEM) and Tomographic Atom Probe (TAP). Tensile tests were also carried out so as to determine the microstructure/properties relationships. Along the complete temperature range, it is shown that a compromise between time for precipitation and small precipitate sizes can be reached around 550°C. At this intermediate temperature, precipitation is shown to occur in two steps, linked with a second nucleation process after nucleation & growth of the first family of Fe2SiTi has been completed. This second precipitation step results in a temporary decrease in precipitate size and an increase in hardness. The nature of these precipitates is discussed in view of the TEM and TAP observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.