Abstract

Abstract. A unique set of 1-year precipitation and stable water isotope measurements from the Japanese Antarctic station, Dome Fuji, has been used to study the impact of the synoptic situation and the precipitation origin on the isotopic composition of precipitation on the Antarctic Plateau. The Antarctic Mesoscale Prediction System (AMPS) archive data are used to analyse the synoptic situations that cause precipitation. These situations are investigated and divided into five categories. The most common weather situation during a precipitation event is an upper-level ridge that extends onto the Antarctic Plateau and causes strong northerly advection from the ocean. Most precipitation events are associated with an increase in temperature and wind speed, and a local maximum of δ18O. During the measurement period, 21 synoptically caused precipitation events caused 60 % of the total annual precipitation, whereas the remaining 40 % were predominantly attributed to diamond dust. By combining the synoptic analyses with 5-day back-trajectories, the moisture source regions for precipitation events were estimated. An average source region around a latitude of 55° S was found. The atmospheric conditions in the source region were used as initial conditions for running a Rayleigh-type isotopic model in order to reproduce the measured isotopic composition of fresh snow and to investigate the influence of the precipitation source region on the isotope ratios. The model represents the measured annual cycle of δ18O and the second-order isotopic parameter deuterium excess reasonably well, but yields on average too little fractionation along the transport/cooling path. While simulations with an isotopic general circulation model (GCM) (ECHAM5-wiso) for Dome Fuji are on average closer to the observations, this model cannot reproduce the annual cycle of deuterium excess. In the event-based analysis, no evidence of a correlation of the measured deuterium excess with the latitude of the moisture source region or the corresponding conditions was identified. Contrary to the assumption used for decades in ice core studies, a more northerly moisture source does not necessarily mean a larger temperature difference between source area and deposition site, thus a more depleted precipitation in heavy isotopes with a higher deuterium excess.

Highlights

  • In the light of future climate changes, it is essential to fully understand past temperature fluctuations (Masson-Delmotte et al, 2006)

  • Ice cores from the Antarctic ice sheet have been used successfully for several decades in palaeoclimatology to provide high-resolution records of past changes in snow and ice isotopic composition, a key tool to reconstruct past local temperature changes (Masson-Delmotte et al, 2006)

  • The present study aims at an improved understanding of the atmospheric influences on the isotopic composition of Antarctic precipitation

Read more

Summary

Introduction

In the light of future climate changes, it is essential to fully understand past temperature fluctuations (Masson-Delmotte et al, 2006). Ice cores from the Antarctic ice sheet have been used successfully for several decades in palaeoclimatology to provide high-resolution records of past changes in snow and ice isotopic composition, a key tool to reconstruct past local temperature changes (Masson-Delmotte et al, 2006). A linear relationship between the annual mean air temperature and the stable water isotope ratios (D / H, 18O/16O) of the snow (and ice) at the drilling site has been found The ratio of water stable isotopes is usually given with respect to the Vienna Standard Mean Ocean Water (VSMOW) in the δ-notation: δ18O = 16O sample − 1 ‰

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call