Abstract

Microhardness variations across the friction stir welded (FSW) and impulse friction stir welded (IFSW) AA2024–T351 joints have been elucidated by the transformations of the S–Al2CuMg phase with a special focus on a distinguished hardness peak within the heat-affected zone (HAZ) of the impulse welds. The increase in hardness within the stir zone (SZ) originated from the partial re-precipitation of the initial Guinier–Preston-Bagaryatsky zones (GPB) and metastable S needles, previously dissolved.) Formation and growth of stable S precipitates via coalescence accounted for the softening through the thermo-mechanically affected zone (TMAZ). The peak strengthening within the HAZ of the IFSW joints was mainly caused by the dense needle-shaped S particles, which can be explained by a mutual influence of the process specific temperature and strain cycles. Dislocations and subgrain boundaries introduced to the material due to plastic deformation facilitated the nucleation of strengthening S precipitates in the HAZ. It demonstrates that the impact of deformation should be considered by the characterization of the precipitation development in the HAZ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call