Abstract

The morphology and structure of precipitates in the heat-affected zone (HAZ) of fire-resistant steel were studied by transmission electron microscopy, while the simulated elevated temperature strength studies were carried out to elucidate the effect of precipitation state on strength at high temperature. The precipitates were identified as (Nb,Ti)(C,N) with FCC structure. A high density of fine (Nb,Ti)(C,N) precipitated in subcritical HAZ. As the peak temperature of thermal cycle was increased, the density and size of particles were observed to decrease. During austenisation, precipitates were dissolved mostly in the coarse-grained heat-affected zone and dissolved totally in the fusion line. The higher strength at 600 °C was present in coarse-grained heat-affected zone and lower in intercritical heat-affected zone. The different precipitate condition in sub-HAZs led to the different evolution behaviour of carbonitrides on heating and thus high-temperature strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.