Abstract

Contaminated sediments from the Milltown Reservoir in western Montana release arsenic and various heavy metals (e.g., Cu, Cd, Pb, Zn, Mn) into an underlying alluvial aquifer as redox conditions in the sediments change with seasonally fluctuating water levels. Porewater analyses indicate that sulfate is depleted with depth. In this study, the feasibility of inducing As(III) precipitation through bacterial reduction of sulfate was evaluated in laboratory microcosms established under strictly anaerobic conditions. As(lII), Fe(II), and sulfate concentrations were routinely monitored in the aqueous phase as sulfate was reduced to sulfide. Both As(III) and Fe(II) concentrations in the sediment microcosms decreased as sulfide was made available. Energy‐dispersive x‐ray (EDS) analysis indicated that some of the arsenic was precipitated as an iron‐arsenic‐sulfide solid phase. The precipitation of arsenic observed in this laboratory study suggests that bacterial sulfate reduction may be a process by which heavy met...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.