Abstract

We investigated the origin of ferromagnetism in epitaxially grown Mn-doped Ge thin films. Using low-temperature molecular beam epitaxy, Mn-doped Ge films were successfully grown without precipitation of ferromagnetic Ge–Mn intermetallic compounds, such as Mn5Ge3. Magnetic circular dichroism measurements revealed that the epitaxially grown Mn-doped Ge films exhibited clear ferromagnetic behavior, but the Zeeman splitting observed at the critical points was not induced by the s,p–d exchange interactions. High-resolution transmission electron microscopy and energy dispersive X-ray spectroscopy analyses show phase separation of amorphous Ge1-xMnx clusters with high Mn content from a Mn-free monocrystalline Ge matrix. Since amorphous Ge1-xMnx was characterized as a homogeneous ferromagnetic semiconductor, the precipitation of the amorphous Ge1-xMnx clusters is the origin of the ferromagnetic semiconductor behavior of the epitaxially grown Mn-doped Ge films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call