Abstract
This study was undertaken to understand the fundamentals of T-Al6Mg11Zn11 intermetallic phase precipitation in heat-resistant Al–Mg–Zn ternary alloys, with the goal of further strength improvements. The thermodynamic assessment involved three alloy compositions, Al–4Mg–4.5Zn, Al–5Mg–3.5Zn, and Al–7Mg–1.5Zn (at%), with the T phase in a fixed fraction (approximately 6–7.5%) in equilibrium with the α-Al phase at 300 °C. The alloy compositions were set on different tie-lines between the α-Al and T phases in the two-phase region, resulting in varied compositions of each phase. In the three experimental alloys aged at 300 °C, the T phase precipitated on the grain boundaries of the α-Al matrix, and granular precipitates were homogeneously dispersed intragranularly. There was no significant difference in the precipitation morphology. It was demonstrated that the lattice parameters of the T and α-Al phases could be controlled based on the alloy composition and applied heat treatments. However, the lattice parameters have no significant effect on the precipitation morphologies of the thermodynamically stable T phase in the Al–Mg–Zn ternary alloys. The Zn-rich Al–4Mg–4.5Zn alloy exhibited a pronounced softening behavior after 10 h of aging due to the enhanced coarsening of precipitates in the α-Al matrix. The thermal instability of the precipitates was responsible for the transformation sequence from the initially formed metastable phases (η-Zn2Mg associated phases) to the stable T phase. These results provided a fundamental insight that alloy strengthening by introducing thermodynamically stable intermetallic phases is essential for sustaining the strength of heat-resistant Al–Mg–Zn ternary alloys after long-term treatment at elevated temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.