Abstract

Landfalling tropical cyclones (TCs) in Northeast China are rare because of the region’s high latitude (>40°N). In 2020, Northeast China was affected by three TCs within half a month—the first time on record. We used the Global Precipitation Measurement orbital dataset to study the precipitation microphysics during the TC period in Northeast China in 2020 (2020-TC), and during September in this region from 2014 to 2019 (hereafter September 2014–September 2019). FY-4A was used to provide cloud top height (CTH). The results show that, compared with September 2014–September 2019, the 2020-TC precipitation has stronger precipitation ice productivity, weaker deposition efficiency, stronger riming, and stronger coalescence processes. The storm top height (STH), CTH, and the difference between the two (CTH-STH) are indicative of the near-surface droplet size distribution (DSD), but there are differences: STH and CTH-STH both correlate significantly with mean mass-weighted drop diameter, whereas only the positive correlation between CTH and normalized drop concentration parameter passes the significance test. These results reveal for the first time the precipitation microphysics of landfalling TCs in Northeast China, and allow discussion of the validity of convective intensity indicators from the perspective of DSD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.