Abstract

In this work, a modified BiFe2O3 nanomaterial was prepared using a combination of co-precipitation and sonication methods. High-resolution scanning electron microscopy (HRSEM) results revealed a nanospherical shaped structure. The energy dispersive X-ray analysis (EDX) analysis confirmed that Bi, Fe and O are present in the BiFe2O3 nanomaterial. The photoluminescence analysis also confirmed the presence of bismuth in the BiFe2O3 nanomaterial. The recombination of electron-hole pairs in Fe2O3 transpires when the electrons and holes were transferred between Bi and Fe2O3 nanomaterials. The UV-Vis DRS analysis revealed that the nanomaterial decrease band gap energy and increased the photoenergy. The modified BiFe2O3 was successfully used as multi-functional materials, such as a photocatalytic material for the photodegradation of Rhodamine B and Rhodamine 6G dyes, antibacterial agent and as improved dye sensitized solar cells (DSSCS).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call