Abstract

The precipitation kinetics of M23C6 carbides in Super304H and TP304H steels were investigated using the selective-etching method, SEM backscattered electron images and Image-Pro-Plus 6.0 software. Precipitation–temperature–time (PTT) diagrams of M23C6 carbides in the as-received Super304H (fine grains), coarsened Super304H (coarse grains) and TP304H (coarse grains) steels all show the typical C-shaped character with nose temperature range from 800 to 850 °C. Compared with the TP304H steel, the same trend is found of the PTT curve of M23C6 carbides for both kinds of Super304H steels, but their start lines move to the right and finish lines to the left. The preferential formation of Nb(C,N) phase at grain boundaries in the Super304H steels inhibited the nucleation of M23C6 carbides in the early stage of precipitation, causing the right shift of the start line of PTT curve. The main reason for the left shift of the finish line of the two Super304H steels was the quicker growing and coarsening rate of M23C6 in the later precipitation stage due to their higher C content than in TP304H. For the difference in PPT curves between the two grain sizes of the Super304H steel, the lower diffusion rate of atoms in the coarse-grained Super304H steel may explain its righter finish line than the fine-grained counterpart, while the reason for its lefter start line is due to the higher solute segregation along coarse-grained boundaries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call