Abstract

6xxx Al alloys owe their superior mechanical properties to the precipitation of finely dispersed metastable β´´ precipitates. These particles are formed in the course of optimized heat treatments, where the desired microstructure is generated in a sequence of precipitation processes going from MgSi co-clusters and GP zones to β´´ and β´ precipitates and finally to the stable β and Si diamond phases. The entire precipitation sequence occurs at relatively low temperatures (RT to approx. 200 °C) and is mainly controlled by the excess amount of quenched-in vacancies, which drive the diffusional processes at these low temperatures. Very recently a novel model for the prediction of the excess vacancy evolution controlled by the annihilation and generation of vacancies at dislocation jogs, grain boundaries and Frank loops was developed and implemented in the thermo-kinetic software MatCalc. In the present work, we explore the basic features of this model in the simulation of the excess vacancy evolution during technological heat treatments. The focus of this article lies on the effect of vacancy supersaturation during different heat treatment steps, such as quenching, heating, natural and artificial aging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call