Abstract

Study regionIowa, a leading agricultural state in the United States is a major source of nitrogen (N) to the Mississippi River. Study FocusThe study evaluated the impact of changes in precipitation, land cover (area under soybean production, Sb), and N fertilizer application (Napp) on variations in streamflow (SF), baseflow (BF) and N-load in the Des Moines, the Iowa, and the Raccoon rivers. New hydrological insights for the regionLn(SF) and Ln(BF) for all three rivers were influenced by the current year (P1) and previous year (P2) precipitations. Presence of P2 in the regression suggested a deficit or excess soil water that influenced fillable pore space causing decreased or increased river flows. The Ln(N-load) for the Raccoon River was also related to P1 and P2 but the Ln(N-load) for the Des Moines and the Iowa rivers were related to P1 with p-values of P2 slightly above α = 0.05 for significance. Presence of P2 in Ln(N-load) regression reflected changes in both fillable porosity and residual soil N. Contributions of Sb and Napp in explaining variations in predictor variables were none to minimal. We conclude that wet climate and not changes in Sb or Napp is the primary reason for recent higher N-loads in these rivers. Under current cropping systems, we suggest directing efforts on treating river water by expanding floodplain interactions to reduce downstream N-loads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.