Abstract

One of the most recent applications of global positioning system (GPS) is the estimation of precipitable water vapor (PWV). It requires proper modeling to extract PWV from zenith wet delay (ZWD). The existing global models take no account of latitudinal and seasonal variation of meteorological parameters in the atmosphere. In fact, they ignore the atmospheric conditions at a specific location. Therefore, site-specific PWV models have been developed for five stations spread over the Indian subcontinent, using 3-year (2006–2008) radiosonde data from each of these stations. Furthermore, a similar regional PWV model is also developed for the Indian region. The purpose of the developed site-specific as well as regional model was to convert ZWDs into PWV without using surface meteorological parameters. It has been found that the developed regional and site-specific PWV models show about mm-level accuracy in estimating PWV using derived ZWD from radiosonde as input. The developed site-specific, regional models were also used to extract PWV from GPS-derived ZWD at Bangalore and New Delhi. The accuracy of the developed site-specific and regional model is of the same level. The PWV accuracy obtained with the developed regional model is about 6.28, 6.6 mm in comparison to radiosonde PWV at Bangalore and New Delhi, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call