Abstract

Synthetic data generation in omics mimics real-world biological data, providing alternatives for training and evaluation of genomic analysis tools, controlling differential expression, and exploring data architecture. We previously developed Precious1GPT, a multimodal transformer trained on transcriptomic and methylation data, along with metadata, for predicting biological age and identifying dual-purpose therapeutic targets potentially implicated in aging and age-associated diseases. In this study, we introduce Precious2GPT, a multimodal architecture that integrates Conditional Diffusion (CDiffusion) and decoder-only Multi-omics Pretrained Transformer (MoPT) models trained on gene expression and DNA methylation data. Precious2GPT excels in synthetic data generation, outperforming Conditional Generative Adversarial Networks (CGANs), CDiffusion, and MoPT. We demonstrate that Precious2GPT is capable of generating representative synthetic data that captures tissue- and age-specific information from real transcriptomics and methylomics data. Notably, Precious2GPT surpasses other models in age prediction accuracy using the generated data, and it can generate data beyond 120 years of age. Furthermore, we showcase the potential of using this model in identifying gene signatures and potential therapeutic targets in a colorectal cancer case study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.