Abstract

Precession has been proposed as an alternative power source for planetary dynamos. Previous hydrodynamic simulations suggested that precession can generate very complex flows in planetary liquid cores [Y. Lin, P. Marti, and J. Noir, “Shear-driven parametric instability in a precessing sphere,” Phys. Fluids 27, 046601 (2015)]. In the present study, we numerically investigate the magnetohydrodynamics of a precessing sphere. We demonstrate precession driven dynamos in different flow regimes, from laminar to turbulent flows. In particular, we highlight the magnetic field generation by large scale cyclonic vortices, which has not been explored previously. In this regime, dynamos can be sustained at relatively low Ekman numbers and magnetic Prandtl numbers, which paves the way for planetary applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.