Abstract

Syntheses under shock in nitrogen bubbled samples of the water - formamide - bicarbonate - sodium hydroxide system at pH8.63, 9.46 and 10.44 were performed in the stainless steel preservation capsules. The maximum temperature and pressure in the capsules reached 545K and 12.5GPa respectively. Using the LC-MS-MS analysis, the 21 synthesis products have been identified, including amines and polyamines, carboxamide, acetamide and urea derivatives, compounds containing aniline, pyrrolidine, pyrrole, imidazole, as well as alcohol groups. It was found that the Fischer-Tropsch-type syntheses with catalysis on the surface of the stainless steel of the conservation capsule associated with the adsorbed hydrogen cyanide reactions and transamidation processes play the main role in the shock syntheses. Formation reactions of all the above-mentioned compounds have been suggested. It was proposed that hydrogen cyanide, ammonia, isocyanic acid, aminonitrile, aminoacetonitrile, as well as adsorbed species H(a), CH(a), CH2(a), CHOH(a), NH2(a) and H2CNH(a) are especially important for the formation of the products. A reduction reaction of adsorbed bicarbonate with hydrogen to formaldehyde has been first postulated. In the studied system also classical reactions take place - Wöhler's synthesis of urea and Butlerov's synthesis of methenamine. It was suggest that material of meteorites may be an effective catalyst in the Fischer-Tropsch-type syntheses at falling of the iron-nickel meteorites in the water - formamide regions on the early Earth. It was concluded that life could have originated due to the impact of meteorites on alkaline water-formamide lakes located near volcanoes on the early Earth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.