Abstract

BackgroundThere are complex interactions between aging, frailty, diet, and the gut microbiota; modulation of the gut microbiota by diet could lead to healthier aging. The purpose of this study was to test the effect of diets differing in sugar, fat, and fiber content upon the gut microbiota of mice humanized with microbiota from healthy or frail older people. We also performed a 6-month dietary fiber supplementation in three human cohorts representing three distinct life-stages.MethodsMice were colonized with human microbiota and then underwent an 8-week dietary intervention with either a high-fiber/low-fat diet typical of elderly community dwellers or a low-fiber/high-fat diet typical of long-stay residential care subjects. A cross-over design was used where the diets were switched after 4 weeks to the other diet type to identify responsive taxa and innate immunity changes. In the human intervention, the subjects supplemented their normal diet with a mix of five prebiotics (wheat dextrin, resistant starch, polydextrose, soluble corn fiber, and galactooligo-saccharide) at 10 g/day combined total, for healthy subjects and 20 g/day for frail subjects, or placebo (10 g/day maltodextrin) for 26 weeks. The gut microbiota was profiled and immune responses were assayed by T cell markers in mice, and serum cytokines in humans.ResultsHumanized mice maintained gut microbiota types reflecting the respective healthy or frail human donor. Changes in abundance of specific taxa occurred with the diet switch. In mice with the community type microbiota, the observed differences reflected compositions previously associated with higher frailty. The dominance of Prevotella present initially in community inoculated mice was replaced by Bacteroides, Alistipes, and Oscillibacter. Frail type microbiota showed a differential effect on innate immune markers in both conventional and germ-free mice, but a moderate number of taxonomic changes occurring upon diet switch with an increase in abundance of Parabacteroides, Blautia, Clostridium cluster IV, and Phascolarctobacterium. In the human intervention, prebiotic supplementation did not drive any global changes in alpha- or beta-diversity, but the abundance of certain bacterial taxa, particularly Ruminococcaceae (Clostridium cluster IV), Parabacteroides, Phascolarctobacterium, increased, and levels of the chemokine CXCL11 were significantly lower in the frail elderly group, but increased during the wash-out period.ConclusionsSwitching to a nutritionally poorer diet has a profound effect on the microbiota in mouse models, with changes in the gut microbiota from healthy donors reflecting previously observed differences between elderly frail and non-frail individuals. However, the frailty-associated gut microbiota did not reciprocally switch to a younger healthy-subject like state, and supplementation with prebiotics was associated with fewer detected effects in humans than diet adjustment in animal models.

Highlights

  • There are complex interactions between aging, frailty, diet, and the gut microbiota; modulation of the gut microbiota by diet could lead to healthier aging

  • Switching to a nutritionally poorer diet has a profound effect on the microbiota in mouse models, with changes in the gut microbiota from healthy donors reflecting previously observed differences between elderly frail and non-frail individuals

  • A reduction in abundance of particular taxa such as Ruminococcus and Prevotella in the elderly, with an associated increase in Alistipes and Oscillibacter, correlated with several indices of frailty, and we reported a direct correlation between values of the healthy food diversity (HFD) index and gut microbiota alpha diversity in both community and long-stay subjects [15, 17]

Read more

Summary

Introduction

There are complex interactions between aging, frailty, diet, and the gut microbiota; modulation of the gut microbiota by diet could lead to healthier aging. Numerous studies have reported an association between consumption of non-digestible fiber ingredients (e.g., prebiotics) and increased levels of reputedly beneficial bacteria in the gut such as Ruminococcaceae, Bifidobacterium, Lactobacillus, Faecalibacterium, and Roseburia [1,2,3,4]. An overview of 2099 participants from 64 studies revealed a significant increase in the abundance of bacteria from the genera Bifidobacterium and Lactobacillus as well as higher levels of fecal butyrate concentration following dietary fiber intervention, involving fructans and galacto-oligosaccharides, compared with placebo/low-fiber comparators [5]. A lowcarbohydrate diet was associated with increased abundance of Streptococcus, Lactococcus, and Eggerthella, and lower abundance of carbohydrate-degrading bacteria (Ruminoccocus, Eubacterium, Clostridium, and Bifidobacterium), resulting in reduction in fecal concentrations of SCFAs [13]. A progressive loss of microbial diversity was observed in mice colonized with a human microbiota consuming a low-fiber diet over generations, which was not recoverable after the reintroduction of dietary fiber [14]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call