Abstract

Cycles of dehydration and rehydration could have enabled formation of peptides and RNA in otherwise unfavorable conditions on the early Earth. Development of the first protocells would have hinged upon colocalization of these biopolymers with fatty acid membranes. Using atomic force microscopy, we find that a prebiotic fatty acid (decanoic acid) forms stacks of membranes after dehydration. Using LC-MS-MS (liquid chromatography-tandem mass spectrometry) with isotope internal standards, we measure the rate of formation of serine dipeptides. We find that dipeptides form during dehydration at moderate temperatures (55 °C) at least as fast in the presence of decanoic acid membranes as in the absence of membranes. Our results are consistent with the hypothesis that protocells could have formed within evaporating environments on the early Earth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.