Abstract

Hydrothermal systems have been proposed as keen environments on the early Earth where chemical evolution processes could have occurred. The presence of minerals and a continuous energy flux stand out among the most remarkable conditions in such environments. In this research the decomposition of two organic acids was studied. Ionizing radiation and thermal energy were the sources selected for decomposition tests, as both are naturally present on hydrothermal systems and probably, they were present on early Earth. Radiation could come from unstable elements in minerals, and heat is the most abundant energy source in hydrothermal systems. As minerals play a key role in prebiotic chemistry experiments and are an essential component on hydrothermal environments, the role of olivine in decomposition was tested. Results indicate that both organic acids highly decomposed when irradiated or heated. Radiation is more efficient than heating in decomposing the carboxylic acids and forming other carboxylic acids. Interestingly, the occurrence of olivine affects decomposition on both heated and irradiated samples, as both the rate of decomposition, and the amount and type of products vary compared with experiments without the mineral. The formation of other carboxylic acids was followed in all samples. Succinic, tricarballilic, citric and carboxisuccinic acids were detected in radiolysis experiments of acetic acid. The radiolysis of formic acid produced oxalic and tartronic. The heating of acetic acid solutions formed succinic, tricarballilic, citric and carboxisuccinic acids. However, the heating of formic acids only generated oxalic acid. The presence of olivine affected the amount and type of carboxylic acids formed in radiation and heating experiments. Natural hydrothermal systems are complex environments and many variables are present in them. Our results reinforce the idea that a combination of variables is necessary to better simulate these environments in prebiotic chemistry experiments. All variables could have affected the prebiotic chemical reactions; and hence, the role of hydrothermal systems in prebiotic chemistry could be much more complex that thought.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call