Abstract

Developing single-atom catalysts with porous micro-/nanostructures for high active-site accessibility is of great significance but still remains a challenge. Herein, we for the first time report a novel template-free preassembly strategy to fabricate porous hollow graphitic carbonitride spheres with single Cu atoms mounted via thermal polymerization of supramolecular preassemblies composed of a melamine-Cu complex and cyanuric acid. Atomically dispersed Cu-N3 moieties were unambiguously confirmed by spherical aberration correction electron microscopy and extended X-ray absorption fine structure spectroscopy. More importantly, this material exhibits outstanding catalytic performance for selective oxidation of benzene to phenol at room temperature, especially showing phenol selectivity (90.6 vs 64.2%) and stability much higher than those of the supported Cu nanoparticles alone, originating from the isolated unique Cu-N3 sites in the porous hollow structure. An 86% conversion of benzene, with an unexpectedly high phenol selectivity of 96.7% at 60 °C for 12 h, has been achieved, suggesting a great potential for practical applications. This work paves a new way to fabricate a variety of single-atom catalysts with diverse graphitic carbonitride architectures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call