Abstract
Transition radiation (TR) and diffraction radiation (DR) appearing as a result of dynamic polarization of medium has widely been used for electron beam diagnostics during the last few years. A lot of techniques for electron beam diagnostics imply description of these phenomena assuming that the radiated area of the target is negligibly small in comparison with the radiation spot in the detector plane (far-field approximation). However, for high-energy electrons this area may reach a macroscopic dimension. In this Letter the general theory in the pre-wave zone is presented. Two new approaches for rejecting the pre-wave zone effect are described and analyzed. By installing a thin lens in the optical path of the measurement system or by developing a concave target, the pre-wave zone effect can be reduced or even rejected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.