Abstract

This study aims to improve the emission efficiency of GaInN-based green light-emitting devices (LEDs) using the pre-trimethylindium (TMIn) flow treatment of a quantum well (QW) since we hypothesize that the pre-TMIn flow treatment is able to suppress the incorporation of surface defects (SDs) from the n-type GaN surface into the QWs. For this purpose, first, we investigate the effect of TMIn flow treatment on the SDs in n-type GaN samples by measuring time-resolved photoluminescence. The result of the investigation shows that the TMIn flow treatment effectively deactivated and/or neutralized the SDs from acting as the nonradiative recombination centers. Next, we prepare and investigate the GaInN-based green LEDs employing five pairs of multiple quantum wells (MQWs), in which the number of pre-TMIn treated QWs varies from zero to five. Through the analysis of prepared samples, we demonstrate that the pre-TMIn flow treatment of QWs works effectively in suppressing the SD incorporation into the MQWs, thereby improving the emission intensity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call