Abstract

Galectin-1 (Gal-1), a member of a highly conserved family of animal lectins, plays a crucial role in controlling inflammation and neovascularization. However, the potential role of Gal-1 in preventing myocarditis remains uncertain. We aimed to explore the functions and mechanisms of Gal-1 in preventing myocarditis. In vivo, C57/BL6 mice were pre-treated with or without Gal-1 and then exposed to lipopolysaccharide (LPS) to induce myocarditis. Subsequently, cardiac function, histopathology, inflammation, oxidative stress, and apoptosis of myocardial tissues were detected. Following this, qRT-PCR and Western blotting were applied to measure iNOS, COX2, TXNIP, NLRP3 and Caspase-1 p10 expressions. In vitro, H9c2 cells pre-treated with different doses of Gal-1 were stimulated by LPS to induce myocarditis models. CCK8, flow cytometry and reactive oxygen species (ROS) assay were then employed to estimate cell viability, apoptosis and oxidative stress. Furthermore, Nrf2 and HO-1 protein expressions were evaluated by Western blotting in vivo and in vitro. The results showed that in vivo, Gal-1 pre-treatment not only moderately improved cardiac function and cardiomyocyte apoptosis, but also ameliorated myocardial inflammation and oxidative damage in mice with myocarditis. Furthermore, Gal-1 inhibited TXNIP-NLRP3 inflammasome activation. In vitro, Gal-1 pre-treatment prevented LPS-induced apoptosis, cell viability decrease and ROS generation. Notably, Gal-1 elevated HO-1, total Nrf2 and nuclear Nrf2 protein expressions both in vivo and in vitro. In conclusion, pre-treatment with Gal-1 exhibited cardioprotective effects in myocarditis via anti-inflammatory and antioxidant functions, and the mechanism may relate to the Nrf2 pathway, which offered new solid evidence for the use of Gal-1 in preventing myocarditis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.