Abstract

We present a mechanism for a generic and powerful force of assembly and mobility for transmembrane proteins in lipid bilayers. This force is a pre-transition (or pre-melting) effect for the first-order transition between ordered and disordered phases in the host membrane. Using large scale molecular simulation, we show that a protein with hydrophobic thickness equal to that of the disordered phase embedded in an ordered bilayer stabilizes a microscopic order-disorder interface, and the stiffness of that interface is finite. When two such proteins approach each other, they assemble because assembly reduces the net interfacial free energy. In analogy with the hydrophobic effect, we refer to this phenomenon as the "orderphobic effect". The effect is mediated by proximity to the order-disorder phase transition and the size and hydrophobic mismatch of the protein. The strength and range of forces arising from the orderphobic effect are significantly larger than those that could arise from membrane elasticity for the membranes we examine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.