Abstract

Abstract The emergence of Pre-trained Language Models (PLMs) has achieved tremendous success in the field of Natural Language Processing (NLP) by learning universal representations on large corpora in a self-supervised manner. The pre-trained models and the learned representations can be beneficial to a series of downstream NLP tasks. This training paradigm has recently been adapted to the recommendation domain and is considered a promising approach by both academia and industry. In this paper, we systematically investigate how to extract and transfer knowledge from pre-trained models learned by different PLM-related training paradigms to improve recommendation performance from various perspectives, such as generality, sparsity, efficiency and effectiveness. Specifically, we propose a comprehensive taxonomy to divide existing PLM-based recommender systems w.r.t. their training strategies and objectives. Then, we analyze and summarize the connection between PLM-based training paradigms and different input data types for recommender systems. Finally, we elaborate on open issues and future research directions in this vibrant field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.