Abstract

Evolutionary ecologists have long been interested in the adaptive significance of morphological traits across stages of animal life. In some cases, traits that are not adaptive in one life stage may be adaptive in a subsequent stage. As such, morphological traits may generate important carryover effects, whereby conditions experienced during one life-history stage influence fitness during subsequent stages. Carryover effects are particularly relevant in young animals, as early life stages are thought to be critical with respect to animal life-history evolution and population dynamics. In songbirds, pre- to post-fledging carryover effects operating within species may be critical for survival and shape life histories among species, but remain poorly understood. Among potential songbird traits, wing development and its associated flight ability may be the most important for post-fledging survival. Thus, to assess the adaptive significance of wing development for juvenile songbirds under Arnold's (Integrative and Comparative Biology, 23, 1983, 347) classic performance-morphology-fitness paradigm, we tested for pre- to post-fledging carryover effects among 20 coexisting species (nine focal species) of an avian community in east-central Illinois, USA. We found evidence for pre- to post-fledging carryover effects of wing development in all species, by which individuals with less developed wings exhibited poorer flight ability and experienced higher rates of mortality after fledging. Furthermore, our findings suggest that carryover effects operating at the species level ultimately help shape patterns of life-history variation among species. Specifically, we found that species with higher rates of nest predation had shorter nestling periods, fledged young with less developed wings and exhibited higher rates of post-fledging mortality. Our results highlight the adaptive significance of wing development as a key factor generating pre- to post-fledging carryover effects among songbirds, and demonstrate how morphological traits, locomotor performance, and age-specific survival may trade-off and interact across juvenile life stages to shape animal life histories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call