Abstract
Pre-swirl fins-based energy saving devices (ESDs) have been designed to improve the propulsive performances of twin-screw ships. To this aim, a combined BEM/RANSE method for efficient self-propulsion prediction is required. The approach is included in a framework for a design by optimization, where systematic variations of the ESD geometry have been used to explore the design space and maximize the energy-saving effect of the device. Surrogate models based on Ordinary Kriging are used too, with the aim of realizing an affordable design workflow for the very preliminary design of such devices. The results show encouraging improvements that reach promising energy-savings up to 3% at the design point and satisfactory savings also in off-design functioning conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.