Abstract
Pre-stimulus oscillation activity in the brain continuously fluctuates, but it is correlated with subsequent behavioral and perceptual performance. Here, using fast Fourier transformation of pre-stimulus electroencephalograms, we explored how oscillatory power modulates the subsequent discrimination of perceived simultaneity from non-simultaneity in the audiovisual domain. We found that the over-scalp high beta (20–28Hz), parieto-occipital low beta (14–20Hz), and high gamma oscillations (55–80Hz) were significantly stronger before audition-then-vision sequence when they were judged as simultaneous rather than non-simultaneous. In contrast, a broad range of oscillations, mainly the beta and gamma bands over a great part of the scalp were significantly weaker before vision-then-audition sequences when they were judged as simultaneous versus non-simultaneous. Moreover, for auditory-leading sequence, pre-stimulus beta and gamma oscillatory power successfully predicted subjects' reports of simultaneity on a trial-by-trial basis, with stronger activity resulting in more simultaneous judgments. These results indicate that ongoing fluctuations of beta and gamma oscillations can modulate subsequent perceived audiovisual simultaneity, but with an opposing pattern for auditory- and visual-leading sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.