Abstract

Human leukotriene C₄ synthase (hLTC4S) is an integral membrane protein that catalyzes the committed step in the biosynthesis of cysteinyl-leukotrienes, i.e., formation of leukotriene C₄ (LTC₄). This molecule, together with its metabolites LTD₄ and LTE₄, induces inflammatory responses, particularly in asthma, and thus, the enzyme is an attractive drug target. During the catalytic cycle, glutathione (GSH) is activated by hLTC4S that forms a nucleophilic thiolate anion that will attack LTA₄, presumably according to an S(N)2 reaction to form LTC₄. We observed that GSH thiolate anion formation is rapid and occurs at all three monomers of the homotrimer and is concomitant with stoichiometric release of protons to the medium. The pK(a) (5.9) for enzyme-bound GSH thiol and the rate of thiolate formation were determined (k(obs) = 200 s⁻¹). Taking advantage of a strong competitive inhibitor, glutathionesulfonic acid, shown here by crystallography to bind in the same location as GSH, we determined the overall dissociation constant (K(d((GS) = 14.3 μM). The release of the thiolate was assessed using a GSH release experiment (1.3 s⁻¹). Taken together, these data establish that thiolate anion formation in hLTC4S is not the rate-limiting step for the overall reaction of LTC₄ production (k(cat) = 26 s⁻¹), and compared to the related microsomal glutathione transferase 1, which displays very slow GSH thiolate anion formation and one-third of the sites reactivity, hLTC4S has evolved a different catalytic mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call