Abstract

E. coli ribonucleotide reductase (RNR) catalyzes the conversion of nucleoside diphosphates (NDPs) to dNDPs and is composed of two homodimeric subunits: R1 and R2. R1 binds NDPs and contains binding sites for allosteric effectors that control substrate specificity and turnover rate. R2 contains a diiron-tyrosyl radical (Y(*)) cofactor that initiates nucleotide reduction. Pre-steady-state experiments with wild type R1 or C754S/C759S-R1 and R2 were carried out to determine which step(s) are rate-limiting and whether both active sites of R1 can catalyze nucleotide reduction. Rapid chemical quench experiments monitoring dCDP formation gave k(obs) of 9 +/- 4 s(-1) with an amplitude of 1.7 +/- 0.4 equiv. This amplitude, generated in experiments with pre-reduced R1 (3 or 15 microM) in the absence of reductant, indicates that both monomers of R1 are active. Stopped-flow UV-vis spectroscopy monitoring the concentration of the Y(*) failed to reveal any changes from 2 ms to seconds under similar conditions. These pre-steady-state experiments, in conjunction with the steady-state turnover numbers for dCDP formation of 2-14 s(-1) at RNR concentrations of 0.05-0.4 microM (typical assay conditions), reveal that the rate-determining step is a physical step prior to rapid nucleotide reduction and rapid tyrosine reoxidation to Y(*). Steady-state experiments conducted at RNR concentrations of 3 and 15 microM, typical of pre-steady-state conditions, suggest that, in addition to the slow conformational change(s) prior to chemistry, re-reduction of the active site disulfide to dithiol or a conformational change accompanying this process can also be rate-limiting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call