Abstract

The paper deals with the problem of scheduling the transmission of periodic processes in a distributed FieldBus system, defining the conditions guaranteeing correct transmission. The scheduling of periodic processes fixes the transmission times for each process in a table, whose length is equal to the Least Common Multiple (LCM) of all the periods. This involves great memorization problems when some periods are relatively prime. The authors identify the theoretical conditions which allow the length of the scheduling table to be drastically reduced, but still guarantee correct transmission. On the basis of the theoretical conditions given, the authors present a pre-run-time scheduling algorithm which determines a transmission sequence for each producing process within the desired scheduling interval. An online scheduling algorithm is also proposed to schedule new transmission requests which are made while the system is functioning. The reduction in the schedule length may increase the number of transmissions, thus reducing the effective bandwidth and increasing the communication overload. In order to make as complete an analysis as possible of the scheduling solution, the authors also present an analysis of both the computational complexity of the algorithms proposed and the communication overload introduced. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.