Abstract

Energy release in the early Universe (z<~ 2x10^6) should lead to some broad spectral distortion of the cosmic microwave background (CMB) radiation field, which can be characterized as y-type distortion when the injection process started at redshifts z<~ 5x10^4. Here we demonstrate that if energy was released before the beginning of cosmological hydrogen recombination (z~1400), closed loops of bound-bound and free-bound transitions in HI and HeII lead to the appearance of (i) characteristic multiple narrow spectral features at dm and cm wavelengths, and (ii) a prominent sub-millimeter feature consisting of absorption and emission parts in the far Wien tail of CMB spectrum. The additional spectral features are generated in the pre-recombinational epoch of HI (z>~1800) and HeII (z>~7000), and therefore differ from those arising due to normal cosmological recombination in the undisturbed CMB blackbody radiation field. We present the results of numerical computations including 25 atomic shells for both HI and HeII, and discuss the contributions of several individual transitions in detail. As examples, we consider the case of instantaneous energy release (e.g. due to phase transitions) and exponential energy release because of long-lived decaying particles. Our computations show that due to possible pre-recombinational atomic transitions the variability of the CMB spectral distortion increases when comparing with the distortions arising in the normal recombination epoch. The existence of these narrow spectral features would open an unique way to separate y-distortions due to pre-recombinational ($1400<~ z <~5x10^4) energy release from those arising in the post-recombinational era at redshifts z<~800. (abridged)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call