Abstract

In the last few years, glycine (GL) showed good experimental evidence as an electron transfer (ET) mediator at the carbon (in particular graphene (GR)) interface. However, ET properties of GL modified GR interface are still not known completely. These can be achieved using density functional theory-based models. Modelling of modified carbon electrode interfaces is essential in electroanalytical chemistry to get insights into their electronic and redox properties. Here we have modelled glycine modified graphene interface to find out its interfacial redox ET properties. Conceptual density functional theory concepts like frontier molecular orbital (FMO) theory and analytical Fukui functions were utilized to predict the ET sites on the modified graphene surface. It is shown that at the glycine-modified graphene interface, amine groups act as additional oxidation sites and carboxylic acid groups as additional reduction sites. Therefore, glycine acts as an ET mediator at the graphene-based electrode interface. The obtained results are well supported by previously published experimental reports.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.