Abstract

Demand for maritime transportation has constantly increased throughout recent years due to its high capacity, extensive coverage, high safety, and so on. However, the growth has also contributed to a rise in maritime accidents, highlighting the need for developing maritime emergency management strategies. In maritime emergency management, resource location-allocation-configuration is the most important and inseparable preparedness action before disasters, directly deciding the quality of emergency rescue operations. Traditional ship-only rescue is frequently both cost-intensive and time-consuming, seriously affecting rescue performance. This study introduces an innovative shipborne UAV operation system to address these limitations. Firstly, a multi-objective mixed-integer nonlinear programming model is established to minimize total rescue time and cost by considering the uncertain maritime environment, continuous docking placements of ships, UAV flight distance, rescue station capacity, etc. Secondly, to efficiently obtain an execution plan, a two-stage algorithm is proposed to facilitate our mission optimization model. Large-scale simulated instances and a real case study demonstrate that (i) the proposed algorithm can solve the model efficiently. (ii) the application of shipborne UAV operation system in maritime emergencies shows a significant improvement in time and cost compared to ship-only system. (iii) it is necessary to consider the uncertain maritime environment when solving emergency management problems. Moreover, extensive parameter sensitivity analysis provides managerial insights into the impact of various factors on the optimization outcomes. We also explore deeper insights that may benefit maritime administration's decision support.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.