Abstract
The pre-mRNA processing enhancer (PPE) element is an RNA sequence element derived from the intronless HSV-TK gene. Insertion of the element into the highly intron-dependent human β-globin gene leads to efficient expression in the absence of splicing. We have analyzed the effect of the PPE element on the expression of mouse thymidylate synthase (TS) minigenes. We have previously shown that the expression of intronless TS minigenes is moderately (up to 20-fold) stimulated by the inclusion of introns. Furthermore, S phase-specific expression of TS minigenes in growth-stimulated cells depends on the presence of a spliceable intron as well as the TS promoter. The goal of our study was to determine if the PPE element would overcome the dependence on introns for efficient expression and for S phase-specific expression of transfected TS minigenes. We found that insertion of the PPE element into an intronless TS minigene partially overcame intron dependence. However, the increase in expression was much less than that observed for the intronless β-globin gene. We also found that intronless TS or HSV-TK genes that contained the PPE element and that were driven by the TS promoter were expressed at a constant level in serum-stimulated cells. However, when an intron was included in these genes, they were expressed in an S phase-specific manner. Thus the PPE element was not able to overcome the dependence on introns for S phase-specific expression of TS minigenes. J. Cell. Biochem. 69:104–116, 1998. © 1998 Wiley-Liss, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.