Abstract
In most orogenic belts, the age of HP metamorphism and subsequent exhumation events still remain open to debate since geochronology can yield results which appear to conflict with the closure temperature concept [Dodson, M.H., 1973. Contrib. Mineral. Petrol. 40, 259–274], and because the behaviour of daughter radiogenic isotopes under HP to UHP conditions is poorly constrained. To obtain new data on isotope migration under high-pressure conditions, two undeformed HP metagranites with partially preserved magmatic assemblages from the French Variscan belt were investigated using the 40Ar/ 39Ar laser probe and U–Pb ion probe methods. In both cases, 40Ar/ 39Ar biotite and U–Pb zircon ages are consistent and could be related to the emplacement of pre-orogenic granites, despite petrological evidence of a strong metamorphic overprint during the Variscan orogeny. Temperatures experienced by the granites during subduction and exhumation events were more than 400 °C above that normally estimated for argon retention in biotite, but failed to cause significant resetting of the mica 40Ar/ 39Ar chronometer. Only a weak intragrain redistribution of argon is evidenced with the laser probe up to the contact with metamorphic garnet fringing biotite. By contrast, a complete resetting of biotite ages occurs in gneisses enclosing the metagranites. These results suggest that, in these dry undeformed HP metagranites, the thermally activated diffusion was relatively ineffective and that recrystallisation is the main process which controlled isotopic exchanges of Ar and Pb. It is likely that the absence of pervasive deformation and fluid circulation has also exercised some control on the preservation of pre-metamorphic isotopic signature in the studied rocks. The possible influence of several other parameters is also discussed. This example reveals that recovering thermochronological information in high-pressure metamorphic rocks is not straightforward and that great caution must be paid in the use of ages for the reconstruction of P– T– t paths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.