Abstract
BackgroundMethylmalonic acidemia (MMA), which is an autosomal recessive metabolic disorder, is caused by mutations in methylmalonyl-CoA mutase (MUT) gene. As a result, the conversion of methylmalonyl-CoA to succinyl-CoA is impaired in this disorder, leading to a wide range of clinical manifestations varying from no signs or symptoms to severe lethargy and metabolic crisis in newborn infants. Since identification of novel mutations in MUT gene can help discover the exact pathogenesis of MMA and also use these disease-causing mutations in prenatal diagnosis, this study was conducted to uncover the possible mutations in an Iranian couple with a deceased offspring clinically diagnosed as having organic acidemia. Moreover, to prevent the occurrence of the mutation in the next pregnancy, we took the advantage of pre-implantation genetic diagnosis (PGD), which resulted in a successful pregnancy.Case presentationThe affected individual was a 15-month-old boy who passed away due to aspiration pneumonia. The child presented at the age of 3 months with lethargy, protracted vomiting, hypotonia, and decreased level of consciousness. To find the mutated gene, Next Generation Sequencing (NGS) was performed as carrier testing for the parents and the results revealed a novel (private) heterozygous missense mutation in MUT gene (c.1055A > G, p.Q352R). After performing PGD on three blastomeres, one was identified as being homozygous wild-type that was followed by successful pregnancy.ConclusionsOur study identified a novel, deleterious, heterozygous missense mutation in MUT gene in a couple and helps to consider the genetic counselling and prenatal diagnosis more seriously for this family with clinical phenotypes of organic acidemia.
Highlights
Methylmalonic acidemia (MMA), which is an autosomal recessive metabolic disorder, is caused by mutations in methylmalonyl-CoA mutase (MUT) gene
Our study identified a novel, deleterious, heterozygous missense mutation in MUT gene in a couple and helps to consider the genetic counselling and prenatal diagnosis more seriously for this family with clinical phenotypes of organic acidemia
In MMA, the conversion of methylmalonyl-CoA to succinyl-CoA is impaired due to pathogenic mutations in methylmalonyl-CoA mutase (MUT) gene or genes involved in the synthesis of MUT-cofactor, adenosylcobalamin (AdoCb1), MMAA, MMAB and MMADHC [5,6,7]
Summary
Our study identified a novel, deleterious, heterozygous missense mutation in MUT gene in a couple and helps to consider the genetic counselling and prenatal diagnosis more seriously for this family with clinical phenotypes of organic acidemia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.