Abstract

Continuous high-resolution sedimentary record of heavy metals (chromium (Cr), copper (Cu), lead (Pb), zinc (Zn), manganese (Mn), and mercury (Hg)), from lakes Lucerne and Meidsee (Switzerland), provides pollutant deposition history from two contrasting Alpine environments over the last millennia. The distribution of conservative elements (thorium (Th), scandium (Sc) and titanium (Ti)) shows that in absence of human disturbances, the trace element input is primarily controlled by weathering processes (i.e., runoff and erosion). Nonetheless, the enrichment factor (EF) of Pb and Hg (that are measured by independent methods), and the Pb isotopic composition of sediments from the remote lake Meidsee (which are proportionally more enriched in anthropogenic heavy metals), likely detect early mining activities during the Bronze Age. Meanwhile, the deposition of trace elements remains close to the range of natural variations until the strong impact of Roman activities on atmospheric metal emissions. Both sites display simultaneous increases in anthropogenic trace metal deposition during the Greek and Roman Empires (ca 300 BC to AD 400), the Late Middle Ages (ca AD 1400), and the Early Modern Europe (after ca AD 1600). However, the greatest increases in anthropogenic metal pollution are evidenced after the industrial revolution of ca AD 1850, at low and high altitudes. During the twentieth century, industrial releases multiplied by ca 10 times heavy metal fluxes to hydrological systems located on both sides of the Alps. During the last decades, the recent growing contribution of low radiogenic Pb further highlights the contribution of industrial sources with respect to wood and coal burning emissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call